
The POS Library: a Highly-Customisable Coordinate System Library for C++

○ Francisco Jesús ARJONILLA GARCÍA (Shizuoka University)
Yuichi KOBAYASHI (Shizuoka University)

We present a coordinate system library based on the POS axioms defined in IEEE 1872-2015 Standard
Ontologies for Robotics and Automation. This new library supports local kinematic trees and connections to
other coordinate system frameworks such as ROS. The library is extendable with custom general coordinates
by template meta-programming and custom implementations of coordinate systems by dynamic polymor-
phism. The POS library is released under the GNU Lesser General Public license.

1. Introduction

The physical nature of robotic systems implies some

form of manipulation of coordinate systems during de-

sign stage and implementation of control algorithms.

The relative locations of each link in the robot is de-

scribed by a kinematic tree, which defines the position

of a coordinate system fixed to each link in relation

to the coordinate system fixed to the corresponding

parent link. When considering an environment with

multiple robots or robots with high redundancy, the

complexity of the kinematic tree can quickly become

an obstacle in designing robotic systems, specially in

spatial (three-dimensional cartesian space) environ-

ments due to the dependency of translations with ori-

entations. The problem may be tackled with basic

trigonometry, matrices or quaternions, but there is a

risk of introducing algorithmic errors due to the high

number of very similar non-commutative operations.

Moreover, coordinates and transformation functions

are often expressed under the same mathematical rep-

resentation. For example, points and translations of

points are indistinguishable under vector representa-

tion. The same goes for orientations and rotations un-

der matrix or quaternion representation. Frequently,

the result is a frustrated engineer that cannot find the

right combination of operations.

Coordinate system libraries facilitate the manipu-

lation of coordinates in complex kinematic trees by

offering simple and easy-to-use application program-

ming interfaces (API) with abstractions that guide

the composition of transformation functions even in

complex environments. Many of these libraries are de-

signed without considering the specific application to

robotics. However, robotic environments have extra

requirements compared to other applications of co-

ordinate systems such as computer graphics. Robot

controllers must be reliable, robust, run in real-time,

as well as having support for distributed environments

and be certifiable, to name a few.

There are many libraries capable of coordinate

transformation that are ready for production use. For

example, the libraries QTransform [1], Cairo graphics

[2] and OpenGL [3] are widely-used graphic libraries

that support coordinate system trees in planar and

spatial space. PyProj library [4] for Python, which

is a programming language often used in robotics

research, is focused on cartographic projections and

geodetic transformations. Specialized tools such as

Matlab [5] have explicit support for robot kinematics

in the toolboxes Robotics Systems and Navigation.

In C++ there are many relevant libraries available,

with Robotics Library [6] being one of the most

advanced in addition to including support for many

other robotics-related tools. Furthermore, the library

tf2 for the ROS ecosystem [7] stands out for its sup-

port for distributed environments and has language

bindings for Python and C++. While all these li-

braries have been used successfully in many applica-

tions, there is much room for improvement. This pa-

per presents a new library that aims at solving many

of the issues that the authors have encountered while

working with the above libraries.

In this paper we present a coordinate systems li-

brary, called the POS library, for the C++ program-

ming language with usability in mind and extended

capabilities compared to existing libraries. The POS

library is based on the POS axioms defined in IEEE

1872-2015 (IEEE Standard Ontologies for Robotics

and Automation) [8]. It comes with an internal units

library that mandates the correct use of magnitudes

at the language level, as well as having support for

spatial kinematic trees and transparent connection

to other coordinate system libraries, both local and

distributed (i.e. MuJoCo [9] and ROS [7]). Other

generalized coordinates such as joint spaces are sup-

ported by template-metaprogramming, whilst sup-

port for custom connections to other libraries, even

in the same kinematic tree, are supported through a

virtual interface.

2. Basics
We now explain the basic concepts of the library.

In this paper, we refer to a developer that codes a

program using the POS library as a user of the library.

Based on the POS ontology [8] convention, the POS

library is based on two basic notions. First, coor-

dinates are elements of some generalized coordinate

space. When operating with two or more coordi-

nates, they must belong to the same coordinate sys-

tem. The template type coord_qty is an alias of

the underlying raw coordinate type. Template types

coordsys

+tf_from_CRF(): tf_data_type
+tf_to_CRF(): tf_data_type

coordsys_traits

coordsys_VI

+tf_to_CRF(): tf_data_type

coordsys_traits

coordsys_VI_local

coordsys_traits

coordsys_VI_CRF

coordsys_traits

coordsys_VI_ROS

coordsys_VI_MuJoCo

«customizable»
coordsys_VI_userdefined

Virtual
Interface

coord_qty

coordsys_traits

coord_value

coordsys_traits

coord_cloud

coordsys_traits

Coordinate Quantity: Alias of
coordsys_traits::quantity_type.

+qty

+inCS

+inCS

+quantities

1..n

coordsys_CRF

coordsys_local

coordsys_ROS

coordsys_MuJoCo

coordsys_generic

coordsys_VI_userdefined

Coordinate
Reference Frame

Fig. 1: Class diagram of coordinate systems and the
virtual interface in POS library. See main text for
more details.

coord_value and coord_cloud are coordinate quan-

tities and lists of coordinate quantities associated to

a specific coordinate system. When there is a need to

operate with coordinates associated to different coor-

dinate systems, they must first be expressed in the

same coordinate system by transforming either to the

coordinate system of the other. Coordinate transfor-

mation functions fulfill this role and are the second

basic notion.

Coordinate systems As shown in Figure 1, the

template type coordsys represents a coordinate sys-

tem, with the template parameter specifying the class

of generalized coordinates. The following classes of

generalized coordinate traits are included: points

(a.k.a. position), orientations and poses. Addition-

ally, planar points and planar poses are included as

experimental interfaces together with the correspond-

ing coordinate bridges to spatial coordinates. The

POS library includes a units library to support the

values of these generalized coordinates. The use of

units when specifying planar or spatial coordinates is

coord_tf

-transformation_data: tf_data_type
+from_CS: coordsys {readOnly}
+to_CS: coordsys {readOnly}

+operator_paren(coord_qty): coord_qty

coordsys_traits

coordinate transformation function:
Objects of this type are only
obtained by calling mapCS().

Fixed object function
optimized for performance

Fig. 2: Class diagram of coordinate transformation
functions in POS library.

mandatory to reduce the probabilities of making mis-

takes when mixing magnitudes expressed in different

units.

Transformation data Coordinate transformation

functions (Figure 2) are only generated by the

function mapCS(), which queries the origin and

destination coordinate systems for the transforma-

tion data. mapCS() provides highly-efficient, self-

contained, static transformation functions for re-

peated invocation. It combines the transformation

data of the coordinate system of each coordinate, such

that every transformation function involves a trans-

formation to the reference frame followed by a trans-

formation from the reference frame to the target coor-

dinate system. Therefore, the role of coordinate sys-

tems is only to provide data for creating transforma-

tion functions and any changes in the kinematic tree

requires regeneration of the transformation function.

The functions tf_to_CRF() and tf_from_CRF() in

class coordsys query the transformation data to and

from the reference frame, respectively. The user does

not have to call these functions directly, but rather

call mapCS() instead. CRF stands for the Coordinate

Reference Frame, which is a unique and common coor-

dinate system from which all other coordinate systems

are placed.

For example, the transformation data of a spatial

point is a translation vector; the conversion functions

from (to) the joint space of a specific manipulator to

(from) spatial pose corresponds to forward (inverse)

kinematic functions.

Virtual interface The ability to support connec-

tivity to other frameworks is based on a virtual in-

terface coordsys_VI internal to coordsys. Actually,

coordsys is a wrapper of coordsys_VI with value

semantics. This way, the kinematic tree is transpar-

«concept»
coordsys_traits

+quantity_type: typename
+tf_data_type: typename

+invert_tf(tf_data_type): tf_data_type
+compose_tf(tf_data_type, tf_data_type): tf_data_type
+deduce_inverted_tf_data(quantity_type, quantity_type): tf_data_type
+transform_coordinates(tf_data_type, quantity_type): quantity_type

«concept»
coordsys_bridge_traits

+convert(coord_qty_type_1): coordinate_qty_type_2
+convert(coord_qty_type_2): coordinate_qty_type_1

Position_CS_traits

Orientation_CS_traits

Pose_CS_traits

+traits_type_1

+traits_type_2

point

orientation

pose

+tf_data_type

+quantity_type

+quantity_type

rotation+tf_data_type

+quantity_type

«customizable»
userdefined_CS_traits

bridge_Pose_Position

bridge_Pose_Orientation

«customizable»
bridge_userdefined

Fig. 3: Class diagram of coordinate system traits and IEEE 1872-2015 conforming coordinate types. In red, an
example of customized generalized coordinates as a realization of trait concepts.

ent to how and where the transformation data is pro-

duced.

The POS library includes several implementations

of coordsys_VI: coordsys_VI_CRF stands at the top

level of the kinematic tree by always producing an

identity transformation. The singleton object CRF in-

stantiates the top level coordinate system in any kine-

matic tree and receives a special treatment in the li-

brary. It is noteworthy that CRF objects represent the

same global coordinate system even in different pro-

cesses, devices or networks.

Non-special implementations of coordsys_VI are

coordsys_VI_local, which implements a local tree

by querying the transformation data of the parent

coordinate system and composing it with its relative

transformation data, coordsys_VI_ROS, which imple-

ments a ROS node to query and provide transforma-

tion data in the ROS ecosystem as geometry mes-

sages, and coordsys_VI_MuJoCo, which queries the

kinematic data of a mjData structure. Each imple-

mentation of coordsys_VI is specified in its own par-

ticular way. Local coordinate systems are defined by

a reference to the parent coordinate system and the

relative transformation data to that parent coordi-

nate system. ROS coordinate systems are defined by

a URI to the master node and the name of a topic.

Mujoco coordinate systems are defined by pointers to

mjModel and mjData structures, and the name of a

body, site, etc..

Thus, transparent use of multiple realizations of the

virtual interface is possible, e.g. combining a local

kinematic tree with ROS nodes in a MuJoCo simula-

tion. The coordsys_VI virtual interface is also useful

to create non-regular transformations, such as non-

affine spatial transformations.

Bridges Another feature of the POS library is the

ability to combine different classes of coordinate sys-

tems in a single kinematic tree, e.g. embed a pla-

nar coordinate system into a spatial one seamlessly.

Bridges are instances of two coordinate systems with

different coordinate traits and two overloaded func-

tions convert with the actual conversion operations.

Having instances of coordinate systems allows to make

the conversion anywhere in both of the coordinate

space by adjusting the transformation functions of the

coordinate system instances. This interface was cho-

sen for increased flexibility, specially when considering

all the features of the POS library as a whole.

Example of use Here we present a short example

of using the POS library to convert coordinates using

a bridge.

// Position Coord.Sys. at (4, 0, 0.03)

pos_coordsys CSpt = pos_coordsys_local

(CRF , {4_m , 0_m , 3_cm });

// Planar position CS at origin

planar_pos_coordsys CSPlpt =

planar_pos_coordsys_local(CRF ,{});

// Instantiate bridge at origin

bridge_Position_PlanarPosition bridge;

// Generate transform function

auto tf = mapCS(CSPlpt , bridge , CSpt);

// Transform a planar point to spatial

planar_pos_point plpt

{CSPlpt , {5_m , 0_m}};

position_point result = tf(plpt);

// result.qty = {1_m, 0_m, -3_cm});

3. Customization
Besides local trees and connection to MuJoCo

simulations and ROS nodes, user-defined providers

of transformation data are available by realizing

the abstract template class coordsys_VI. To en-

able modifications to the data of these virtual in-

terfaces, the template class coordsys_generic is de-

rived from the class coordsys and holds a reference

to the user-defined virtual interface, that is implic-

itly convertible to a reference to the abstract class

virtual interface.

Each coordsys object deals with a single class

of generalized coordinates. The type coordsys

has a unique template parameter that specifies the

type of the generalized coordinates, the type of

the transformation data, and four functions that

describe the operations involving the previous two

types (Figure 3). The user may add custom

classes of generalized coordinates by realizing the

C++ concept coordsys_traits. Likewise, the

user may specify conversions between classes of co-

ordinate systems by realizing the C++ concept

coordsys_bridge_traits.

We have included the derived template class

coordsys_generic to facilitate users the creation of

coordsys-conforming wrappers. Different classes of

generalized coordinate systems can be combined by

using bridges, unifying them into a single kinematic

tree.

4. Conclusions
We have introduced a novel coordinate system li-

brary with several improvements over similar exist-

ing libraries. Basically, in this library coordinates

are brought together under the same coordinate sys-

tem by coordinate transformation functions, which

are generated by mapCS() by querying coordsys ob-

jects.

The POS library supports standards-based inter-

faces, connectivity to other coordinate system frame-

works, support for custom generalized coordinate

spaces, enforced use of units in planar and spatial

coordinate systems, and transparent bridges between

coordinate system types, amongst other features. Due

to the requirements of efficiency and the use of C++

specific features such as C++ concepts, this library

is only available in C++ and there are no plans to

provide other language bindings.

We hope that this library will simplify operations

with coordinate systems to a wide audience, and help

bring together different technologies that improve the

scalability, efficiency and flexibility of robotic systems.

The POS library is released under the Lesser Gen-

eral Public License [10] and is available at

https://www.gitlab.com/ninbot/pos

In the future, we want to integrate IEEE 1873-2015

(IEEE Standard for Robot Map Data Representation

for Navigation) [11] into the POS library. [11] stan-

dardizes the notions and naming conventions of met-

ric maps (continuous planar coordinates), occupancy

grid maps (discrete planar coordinates) and topolog-

ical maps (graph representation of planar maps), as

well as their relationships and uncertainties.

References

[1] https://doc.qt.io/qt-5/qtransform.html.

[2] https://www.cairographics.org/.

[3] John Kessenich, Graham Sellers, and Dave

Shreiner. OpenGL Programming Guide: The

Official Guide to Learning OpenGL, Version

4.5 with SPIR-V. Addison-Wesley Professional,

Boston, MA, 9th edition edition, 2016.

[4] https://pyproj4.github.io/pyproj/stable/.

[5] https://www.mathworks.com.

[6] Markus Rickert and Andre Gaschler. Robotics

library: An object-oriented approach to robot

applications. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems

(IROS), pages 733–740, September 2017.

[7] Tully Foote. tf: The transform library. In

2013 IEEE Conference on Technologies for Prac-

tical Robot Applications (TePRA), pages 1–6,

Woburn, MA, USA, 2013. IEEE.

[8] IEEE Standard for Autonomous Robotics Ontol-

ogy. In IEEE Std 1872-2015, pages 1–60, 2015.

[9] Emanuel Todorov, Tom Erez, and Yuval Tassa.

Mujoco: A physics engine for model-based con-

trol. In IEEE/RSJ international conference on

intelligent robots and systems, pages 5026–5033.

IEEE, 2012.

[10] https://www.gnu.org/licenses/lgpl-3.0.html.

[11] IEEE Standard for Robot Map Data Represen-

tation for Navigation. In IEEE Std 1873-2015,

2015.

